

Electrocatalytic Conversion of CO₂ to Chemicals: Revenue enhancer for fermentation and other high CO₂ byproduct processes

15 May 2014

Making today's products with carbon dioxide

Large direct applications now; more later

Basic Chemicals (\$1 Trillion)

First product is ethylene glycol (\$27B)

Specialty Chemicals (\$800B)

Same technology also makes specialty chemicals

Renewable Chemicals and Fuels

RESPECT • BOLD INNOVATION • TEAMWORK

CO₂ is the lowest cost feedstock for MEG

Getting value out of CO₂

Get value from CO₂; add value to fermentation

- Meet low carbon fuel standards
- Diversify product mix at an existing facility

Example: CO₂ byproduct of ethanol production

RESPECT • BOLD INNOVATION • TEAMWORK

6 / © 2013 Liquid Llght

Shorter, lower cost value chain to bio PET

≶LIQUIDLIGHT

RESPECT • BOLD INNOVATION • TEAMWOR

Example: "Bolt-on" MEG plant

82.5M gpy ethanol facility Releases ~278,800 tons of high purity CO_2 annually

"Bolt-on" CO ₂ to Ethylene Glycol			
Capacity	175 kta		
CapEx	\$280 M		
OpEx	\$77 M/yr		
Revenue	\$210 M/yr		
15 yr NPV	\$200 M		

Attributes of Liquid Light technology

Process Technology **Advanced Chemistry** Fewer steps Smart catalysts Simpler scale-up Low energy 'Tunable' to make varied **Highly** selective products Builds multi-carbon chemicals First Process for MEG: Cost 25% lower cost of Advantage production

Reactor and Process Design

Catalysts

Rapid progress; starting process development

	Batch	Flow Reactors		
Cell Size: Production Rate: Scale Increase:	0.0001 m ² 1 g/day	.01 m² 0.2 kg/day	0.2 m ² 5 kg/day 20x	1-3 m ² → 50 kg/day 5 to 15x
2	2011- 2012	2013	Q1 2014 1 st Gen Commercial Scale	2015-6 Next Generation

Technology to make major chemicals from carbon dioxide

Turn a potential liability into an asset

Increase the value of fermentation processes

Reaction chemistry validated; next step is process integration

Thanks!

