

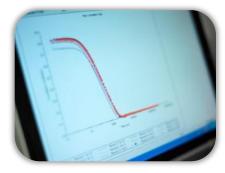
BUILDING MANUFACTURING PROCESSES & PRODUCTS DROP BY DROP

Dr Alan Hudd Xennia Technology Ltd Presented at the 1st Digital Manufacturing Conference Florida, USA, June 2011

Section I INTRODUCTION TO XENNIA

Background to Xennia

- Xennia is the world's leading industrial inkjet solutions provider
- 15 year history, over 300 customer development programmes
- World class reputation underpinned by a strong IP portfolio
- Unique expertise in inkjet chemistry with strong engineering capability
- Headquartered in UK, sales offices in US and China
- Awarded Queen's Award for Enterprise in 2010
- Offering reliable inkjet process solutions:
 - Inkjet modules and inks for OEM partners with market access
 - Printing systems and inks for end users through our distributors

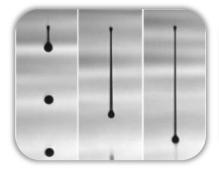


Xennia helps customers lower operating costs, increase productivity and simplify mass customised production by revolutionising manufacturing processes

FROM INKJET IDEAS ... TO PRODUCTION REALITY

Feasibility studies

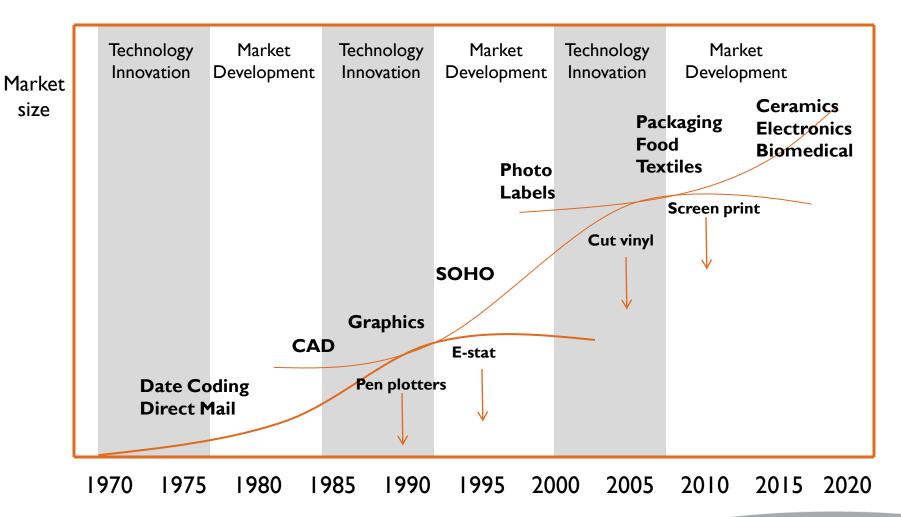
Process development



System design

XENNIA

Production solutions



Technology push to market pull

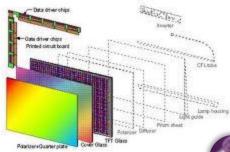
Inkjet technology & market evolution curve: The next wave has started

Manufacturing processes

- Key examples of inkjet in manufacturing processes & products
- Textiles
 - Decoration and digital finishing
- Industrial decoration
 - Ceramics, furniture laminates
- Printed electronics
 - Solar energy, displays
- Biomedical
 - Sensor manufacture

(ENNIA

www.xennia.com


Inkjet for manufacture

- Use inkjet to:
 - 6 Coat
 - Create manufacturing processes
 - Manufacture products
- Inkjet printing difficult materials
 - Pigments (including inorganic), phosphors, metals
 - Polymers
 - Functional materials
- Key inkjet ink technologies
 - Pigment and polymer dispersion
 - Solvent based and UV cure chemistries

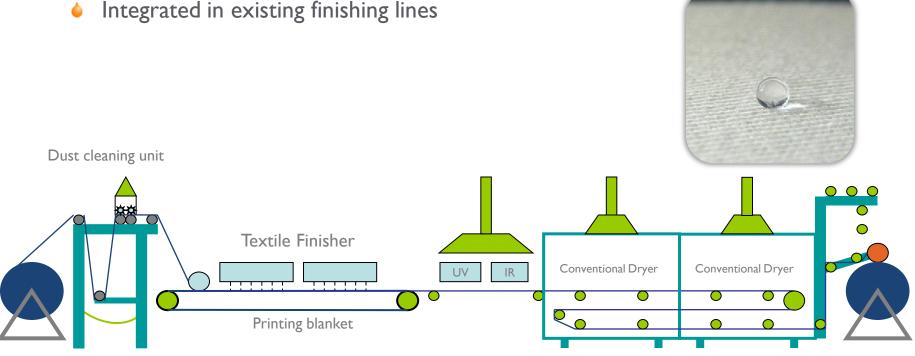
KENNIA

Section 2 DIGITAL FINISHING

Digital finishing

Major benefits of inkjet digital finishing

- Multi functionality
 - Single sided application possible
 - Two sides can have different functions
- Patterning place function where you want it
- Functionality applied efficiently to textile surface only
- Highly consistent coat weight
- Environmental and energy savings
- Not influenced by underlying substrate variations
- Not influenced by bath concentration or dosing variations



Inkjet textile finishing

- Inkjet digital textile finishing process ۵
- System can be
 - Standalone; or ۵.

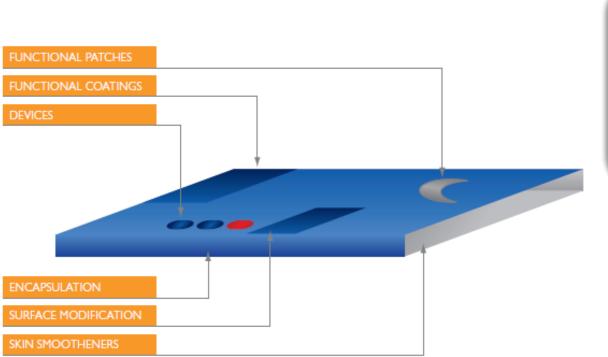


Functional materials

- Hydrophobic
 - Comfort of cotton material on skin side
 - Water and dirt repellent function on outside
- Dirt repellant/self-cleaning
 - More efficient coating when applied with inkjet
 - Single-sided application important
- Antimicrobial/anti-fungal/anti-insect
 - Selective deposition, efficient usage
 - Slow release technology
 - Materials used cannot be in skin contact
 - Single-sided application vital

Functional materials II

- Flame retardant
 - Highly coherent coating very important
 - Single side coating allows lighter weight
- UV blocking (anti-sunburn)
 - Coating needs to be away from skin
- IR blocking
 - Insulating fabrics tents, clothing
- Electrically conductive
 - Antennae incorporated into clothing, tents
 - Communication with electronic devices
- Solar energy harvesting
 - Tents, awnings, etc
 - Low cost manufacturing essential



Functional textiles in action

www.xennia.com

XENNIA

Digital functionality

Textile value chain

- Current textile production technology is labour intensive
- Process automation will reduce labour content in costs
- Variable costs currently high for inkjet
 - Inkjet machines will consume tons of ink
 - Economy of scale dictates lower ink prices
 - No fundamental reason for prices being higher
- Low cost location becomes less important
- Logistics will be the key component to control

Outlook

CINS CI.

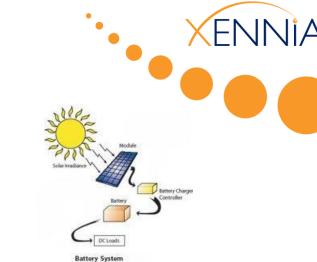
Inkjet will revolutionise an outdated industry to deliver production reliability & productivity at lower costs

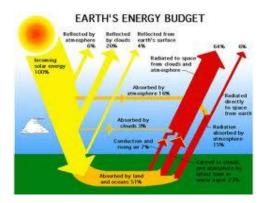
ENNIA

to

Section 3 SOLAR PANEL MANUFACTURE

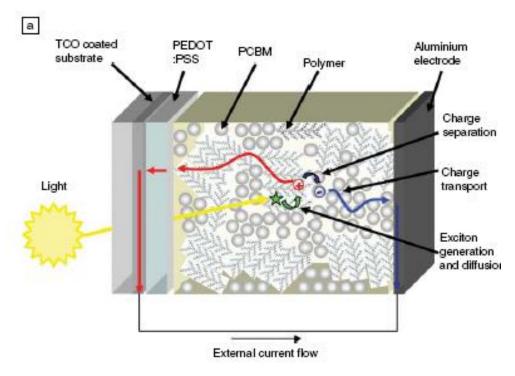
Renewable energy


- Concerns about
 - Sustainability
 - Global warming
 - Pollution
- Lead to increasing trend for clean, renewable energy
 - Solar photovoltaic
 - Solar thermal
 - 6 Wind
 - 6 Tidal
 - Geothermal
- Solar photovoltaic and wind have greatest potential
 - Renewable energy proportion still very low (0.8% in 2002)



Solar energy generation

- Huge potential for energy generation
 - 840 W/m² reaches Earth's surface during daylight
 - e.g. 1600 TW strikes continental USA
 - All electricity needs met with 10% efficient devices covering 2% of area
 - (Interstate highways currently cover 1.5% of area)
- Solar energy harvesting
 - Thermal heat from sun heats water
 - Used for hot water and swimming pools
 - Photovoltaic energy from sun used to generate electricity
 - Can be used for any purpose


Solar photovoltaics

- Types of photovoltaic (PV) (solar cells) available
- Conventional (inorganic)
 - Ist generation crystalline Si
 - ^{2nd} gen poly-Si, a-Si, CdTe or CIGS
 - Input energy creates electron-hole pairs
 - Separated by internal field
 - Generates photocurrent
- Organic (small molecule or polymer)
 - Heterojunction design incorporates:
 - Electron transport layer (ETL) and hole transport layer (HTL)
 - Input energy creates excitons
 - ETL/HTL interface drives dissociation into electrons and holes
 - 'Standard' materials P3HT and C₆₀ derivatives

OPV schematic

- P3HT bandgap 1.9 eV
- PCBM LUMO-P3HT HOMO separation ~ IeV
- Carrier mobilities 10⁻⁴ cm²/Vs

Christoph Brabec and James Durrant, Solution-Processed Organic Solar Cells, MRS Bulletin, 33, 670 (2008)

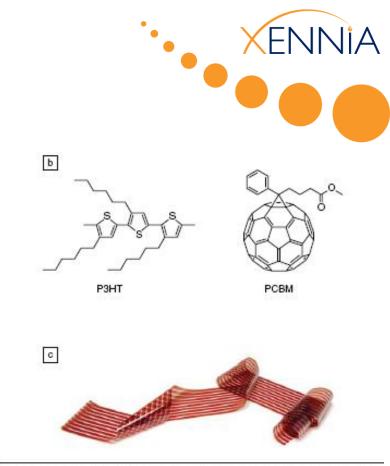
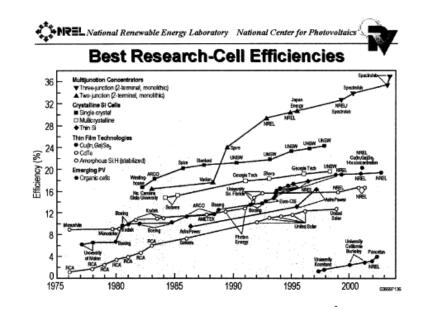



Figure 1. (a) Schematic layout of the function of a typical organic solar cell. (b) Chemical structures of typical donors and acceptors. (c) Photograph of reel-to-reel-fabricated organic solar cells. The active layer of the solar cells is a P3HT/PCBM blend. *Note:* P3HT is poly(3hexythiophene), PCBM is [6,6]-phenyl-C61-butyric acid methyl ester, PEDOT is poly(3,4ethylenedioxythiophene), PSS is poly(4-styrenesulfonate), and TCO is transparent conductive oxide.

Device efficiencies >4%

Solar photovoltaics

- Key figures of merit for PV
- Efficiency
 - Percentage of incident energy converted into electrical energy
 - Includes collection efficiency as well as conversion efficiency
- 6 Cost
 - Measured in \$ (or €)/W_p
 - Current typical cost 2-8\$/W_p
 - Need to reduce significantly
- 6 Lifetime
 - Minimum 3-5 years
 - Desirable 20-25 years

(FNNIA

Key cost drivers

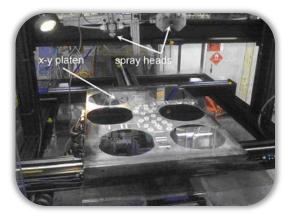
- Key to reducing cost of PV
 - Lower cost materials
 - Lower cost manufacturing
 - Continuous
 - Additive (no waste)
 - Flexible

www.xennia.com

XENNIA

Manufacturing techniques

- Traditional semiconductor techniques
 - Thermal/electron beam evaporation
 - CVD/MOCVD etc
- Other coating techniques
 - Spin coating
 - Spray coating
- Printing
 - Flexo/gravure printing
 - Screen printing
 - Inkjet printing

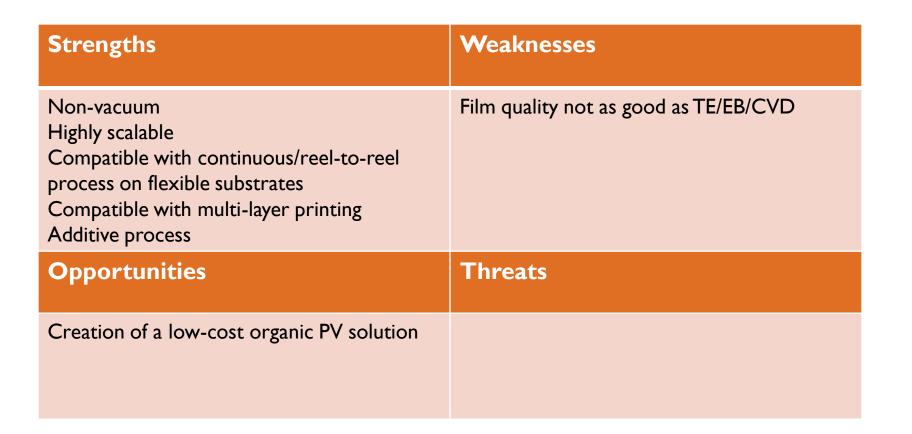


ENNIA

Traditional techniques

- Thermal/electron beam evaporation
 - Material is heated and evaporates
 - Deposits onto substrate and layer grows
- CVD/MOCVD
 - Material made into volatile compound
 - Compound decomposes to deposit material
- Spin coating
 - Material in solution spun on flat surface
 - Uniform coating with evaporation of solvent
- Spray coating
 - Solution sprayed on surface
 - Solvent evaporates

Technology comparison


Technology	Applicability	Scalability	Productivity	Materials Wastage	Film quality	Process type	Multiple layers?
Thermal evaporation (vacuum)	Inorganic/ small molecule	Low	Low (batch)	Moderate	High	Subtractive	Yes but slow
CVD (low pressure)	Inorganic/ small molecule	Low	Low (batch)	Moderate	High	Subtractive	Yes but slow
Spin-coating	Polymer/small molecule	Low	Low (batch)	Poor	Medium	Subtractive	Yes but slow
Spray-coating or doctor blade	Polymer/small molecule	High	High	Poor	Low	Subtractive	Yes
Screen or gravure printing	Inorganic/ polymer/small molecule	Medium	Very high	Moderate	Medium	Additive	Yes but damage?
Inkjet printing	lnorganic/ polymer/small molecule	High	High	Good	Medium	Additive	Yes

Gas phase versus solution phase deposition

www.xennia.com

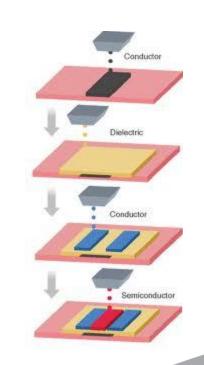
XENNIA

Inkjet versus other techniques

Inkjet deposition of coatings

- High throughput
- High reliability \rightarrow high productivity
- Excellent ink chemistry
 - Functional performance
 - Aeliable printing
- Costs must make sense for application

www.xennia.com


FNNIA

Low cost manufacturing

- Inkjet has the potential to allow low cost manufacturing of PV
- Can create a new market dynamic for solar energy production
- Need to deposit
 - V materials
 - Contacts

Applications for low cost PV

- Low cost, flexible PV allows
 - Lower cost of 'conventional' power generation PV
 - Easier installation
 - Return on investment reasonable for mass market

- Enable new applications not currently possible/significant
 - Power generation for mobile devices
 - Power generation for signage
 - Power generation in clothing

Applications example

FNNIA

- Sestar Technologies LLC
- SolarTurf[™]
 - PV incorporated into synthetic grass
 - Light absorbing layer can be coloured
 - Absorbing grass is green!
 - Make compatible with existing consumer products

- Allows power generation from existing areas
 - Lower cost of lighting public and private areas

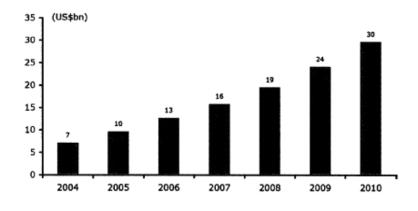
Applications example II

- Sestar Technologies LLC
- ♦ SolarFabrics[™]
 - V incorporated into clothing
 - Military and civilian
 - Absorbing materials in all colours
- Allows power generation from clothing
 - Powering phones, radios, iPods, GPS
 - Powering active camouflage

Applications example III

- Sestar Technologies LLC
- ♦ SolarFabrics[™]
 - V incorporated into tents, awnings, etc
 - Multiple colours

- Allows power generation to campsites, homes and buildings
 - Powering portable devices
 - Lower cost of lighting public and private areas



Market size

- Photovoltaic market growing significantly
 - 4 20-25% per annum
 - \$30Bn industry generating 32GW
 - Faster introduction impeded by costs
- Impact from
 - Subsidies
 - Regulations (e.g. specified renewables percentage)
 - Emissions taxes
- Low cost solutions have massive potential

Future

Potential

- Solar power generation everywhere!
- Based on low cost production

- Challenges
 - Increase efficiency
 - OPV $\sim \frac{1}{3}$ efficiency of conventional
 - Increase stability
 - OPV relatively unstable

2008: First organic solar cell fabricated with inkjet

Inkjet deposition ready to replace conventional techniques

- Inkjet printed electronics expected to grow
 - €62M in 2008

Outlook

۵

۵

6

€3,079 in 2013

Conclusions

- Inkjet technology has the potential to transform industrial manufacture
 - Higher productivity/lower cost
 - Higher flexibility
 - Economical shorter runs
 - (Mass) customisation
 - Faster product design introductions
 - Higher quality
 - New functionality
 - Environmental benefits

- Digital finishing enables process automation
 - Will strengthen competitive power of Western textile industry
- Inkjet promises low cost solar panel manufacture
 - Solar power generation everywhere

FROM INKJET IDEAS TO PRODUCTION REALITY

